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The Elast ic  Interaction Between Dis locat ions  and Defects Assoc ia ted  with 
Calcium Impuri t ies  in Sod ium Chloride* 
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The elastic interaction between edge and screw dislocations and defects associated with calcium 
impurities in NaCl is studied. The treatment covers all the possible calcium-impurity-cation-vacancy 
pairs where the cation vacancy occupies the nearest, second-nearest and third-nearest neighboring 
positions of the calcium impurity. The study is extended to include defect clusters containing 
two or more calcium-impurity-cation-vacancy pairs. The strong interaction between a screw 
dislocation and the various impuri ty-vacancy defects in sodium chloride containing calcium and its 
effects on the strengthening of the NaC1 structure are discussed. 

Introduction 

In recent years there have been a number of investiga- 
tions of the effects of divalent impurities on the 
properties of polar crystals, in particular upon the 
ionic conductivity, dielectric loss, optical absorption, 
electron spin resonance, etc. These studies have 
shown that the impurity cations enter the structure 
by direct substitution. The enhanced conductivity is, 
for example, a consequence of the requirement that an 
equal number of cation vacancies must be simul- 
taneously created in order to achieve charge balance. 
These divalent impurities and cation vacancies can be 
distributed in various ways. They could be present as 
indiv idual  defects independent  of one another,  or they  
could be present  as i m p u r i t y - v a c a n c y  pairs or in larger 
aggregates. For  the pai red defects, the cation vacancies 
can assume the nearest ,  second-nearest,  third-nearest  
neighboring positions with respect to tha t  of the divalent  
impur i ty .  For those cation vacancies occupying higher- 
order neighboring positions t han  the third,  one is ap- 
proaching the region of separat ion beyond which i t  is 
no longer necessary to speak of the defects as associated 
into pairs (Lidiard, 1955). 

There also has been a growing real izat ion of the dif- 
ferent mechanical  effects tha t  defects have on crystal- 
l ine solids. Defects have been categorized as causing 
'gradual  hardening '  and  ' rapid  hardening '  due to their  
effect on the resistance to the motion and mult ipl ica-  
t ion of dislocations in a crystal l ine solid (Fleischer, 
1962; Chang & Wiedersich,  1962). For the 'gradual  
hardening '  defects the increase in  resolved critical 
shear stress per uni t  concentrat ion of defect is in the 
range of G/100 to G/IO, while for the ' rapid hardening '  
types  the increase is around G to 10G, where G is 
the shear modulus  of the solid. I t  has been suggested 
tha t  the former type  of defect produces a symmetr ic  
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distort ion of the lat t ice and  does not  in teract  wi th  
screw dislocations (according to isotropic e las t ic i ty  
theory) while the la t te r  produces non-symmetr ic  
distortions which interact  s t rongly with screw disloca- 
tions. The na ture  of the elastic in teract ion between 
dislocations and  defects producing non-symmetr ic  
distortions in  a crystal l ine lat t ice is therefore of 
considerable scientific interest.  

The present  article discusses specifically the nature  
of the elastic in terac t ion  between edge and screw 
dislocations and  defects associated wi th  calcium 
impuri t ies  in  sodium chloride. The t r ea tment  can 
easi ly  be extended to the more general  case of poly- 
valent  cation impuri t ies  in solids of the NaC1 structure.  

General  considerat ions  of the elast ic  
interaction energy 

The calculation of the in teract ion energies between the 
different  types of defect pairs and dislocations will  be 
carried out in  the manner  of Cochardt,  Schoek & 
Wiedersich (1955) and  of Fleischer (1962). The same 
assumptions will  be made,  namely  tha t  the stress due 
to the dislocation is constant  over the volume of the 
defect, the  s t ra in  due to the defect is constant  over a 
small  volume near  the defect and negligible elsewhere, 
and  tha t  the concentrat ion of defects is small  so tha t  
defect-defect  interact ions can be neglected. Also, the 
theory of e las t ic i ty  as developed for an  isotropic 
cont inuum will be used. Wi th  these s implifying as- 
sumptions,  the in teract ion energy is merely the 
product  of the tensor components of the dislocation 
stress and  the defect strain.  The problem is then  
reduced to specifying these tensors in the same 
coordinate sys tem and performing the indicated opera- 
tions. 

A calculat ion will  then  be made  to f ind the lat t ice 
s t ra in  of a defect cluster containing more t han  one 
calc ium-vacancy pair  in sodium chloride and  its 
in teract ion energy with a dislocation. The model  for 

A C 17 -- 52 



796 T H E  E L A S T I C  I N T E R A C T I O N  B E T W E E N  DISLOCATIONS AND D E F E C T S  

the cluster will be that  of a coherent calcium chloride 
inclusion in sodium chloride, and the lattice strains 
calculated will be used to give an idea of the strains 
produced by a single defect pair. 

S t r e s s  t e n s o r  of a di s loca t ion  at 
a Ca i m p u r i t y - v a c a n c y  s i te  

(a) Screw dislocation 

Consider a screw dislocation line segment which 
lies along the [101] direction in the NaC1 lattice. 
Consider also a defect in the lattice located a per- 
pendicular distance r from the dislocation line. Its 
crystallographic position around the dislocation is 
defined with respect to the l~aC1 unit cell and the 
dislocation by the vector r and the angle 0 as illustrated 
in Fig. 1. This is possible because of the symmetry 
of the stress field of the screw dislocation. The stress 
tensor in the x-, y-, z-coordinate system defined by the 
edges of the l~aC1 unit cell is (Fleischer, 1962) : 

sin 0 
- -  C O S  0 - -  " - -  

V2 
Gb 

a~j = + 

0 

sin 0 sin 0 
0 

V2 V2 
sin 0 

0 + cos 0 

i , j  = x , y , z  (1) 

where G is the shear modulus and b is the Burgers 
vector. 

(b) Edge  dislocation 

Edge dislocation in :NaC1 lie in the {110} planes and 
have their Burgers vector in the (110) directions. 
Consider the (110) [1i0] edge dislocation and the 
defect located a distance r from the dislocation line 
as illustrated in Fig. 2. The position around the disloca- 
tion at which the defect lies is defined by the angle 0 
between the Burgers vector, b, and the radius vector, 
r. The stress tensor of the dislocation at a point r, 0 
around the dislocation referred to the x-, y-, z-coordi- 
nate system is (Cochardt et al., 1955): 

z 
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Fig. 1. Crystallographic position of a point defect 
around a screw dislocation. 
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z 
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Fig. 2. Crystallographic position of a point defect 
around an edge dislocation. 

not have the symmetry that  is present around the 
carbon interstitial in iron considered by Cochardt 
et al. (1955), where there is a large expansion of the 
lattice in one direction and a slight, uniform, contrac- 
tion in directions normal to this. In the present case, 
there is a large contraction in the lattice along the axis 
of the defect pair, but in the directions normal to this 
one would expect different values of strain in the 
regions surrounding the calcium ion and the sodium 
ion vacancy. 

To sidestep this complexity one makes the simplific- 
ation of assuming an average uniform expansion in the 

G b  

aiJ = 2~(1-V)r 
+ [cos 0 cos 20 - ½ (sin 80 + sin 0)] 

x +[ sin0c0s20] 
0 

where v is the Poisson's ratio, 

Stra in  t ensor  of a Ca i m p u r i t y - v a c a n c y  pair  

The lattice strain around a Ca impurity-vacancy pair 
is difficult to determine exactly. Because of the two 
different species making up the pair, this defect does 

+[~ sin0 cos2 0] 00 ) 

[-c0s0 c0s20-½(sinS0+sin0)] ; i ,j  - x, y, z, (2) 
0 -- [2v sin 0] 

lattice normal to the axis of the defect pair. The strain 
tensor of the defect is then 

e~,z = 0 eii  ; k , l = x ' , y ' , z '  (3) 
0 0 ii 

where sm < 0 is the contraction along the axis of the 
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defect  (z' axis) and  s~TsH > 0* is the expansion 
normal  to this  axis. This tensor represents merely  a 
te t ragonal  distort ion about  the defect. 

After  rota t ing this  tensor into the coordinate sys tem 
of the sodium chloride uni t  cell, the  interact ion energy 
between this  type  defect and  a screw dislocation is 

Gbv 
E = - 2z~----r [(rxx (sxx- Szz) -4- 2(xxu (Sxu -k su~)] (4) 

since guy=O, axz=O, (~xz=-(rzz, and (~xy~-(~yz in the 
x-, y-, z-coordinate system, v is the volume of the 
defect. The interact ion energy wi th  an edge dislocation 
is 

Gbv 
E = [~zsz~ + a~s~  + (r~s= + 2 ~ s ~ ]  (5) 

2~(1 -v)r  

since axz = 0 and auz = 0. 

I n t e r a c t i o n  e n e r g i e s  b e t w e e n  de fec t  p a i r s  
a n d  d i s l o c a t i o n s  

(a) Nearest neighbor defect pairs 
There are 12 neares t  neighbor Na+ sites around a 

Ca2+ site t ha t  a sodium ion vacancy  could occupy, but  
only half  of these are non-equivalent  according to the 
present  model. The in teract ion energies between these 
defects and  a screw dislocation are (Fleischer, 1962): 

El,e,5,6:-2--~T~r + c o s 0  _ _ ~ s  + ] / 2 s i n 0  2 8 * 

Es, 4 = 0 .  (6) 

The interact ion energies wi th  an  edge dislocation are 

Gbv [(sin30+sinO) (Si__+_+sH__~i) 
El,  2 - 2~(1 - v ) r  

Gbv [{ 
E3,5 = E4,6 = 2 ~ ( 1 - v ) r  ½(sin 3 0 + s i n  0) 

 (oo 0oos 0) (  7 II ) 
+ {½ (sin30 + sin 0) + (cos 0 cos 20)} si 

+ (2v sin O) (s~2sIH) ]~" (7) 

* This holds true only for the next nearest neighbor defect 
pairs. For the other defect pairs, s i#  ell. The approximation 
~I ~ sH, however, is not too serious in the present case 
where the host lattice is NaC1. 

~f This is the same as Fleischer's equation (9) if the latter 
is corrected by changing the cos 0 coefficient from ~/2 to 
1/V2. 

:~ When there are 4 energies involved differing by + factors 
ir~ the expressions Ei,j,~,I=+A+B, E~ corresponds to 
+A+B, Ej corresponds to T A--B, EI¢ corresponds to 
--A+B, and ~t corresponds to --A--B. Equ.ation (7) is 
the exception where the two energies correspond to + A - B  
and -- A + B only. 

In  equat ions (6) and (7), the E~ are for defects whose 
axes are [110], [110],[101], [101], [011], and [0 i l ]  
respectively.  

(b ) Second-nearest neighbor defect pairs 
T h e  second nearest  neighbor defect pairs have axes 

along the (100> directions so there are only three non- 
equivalent  orientat ions to consider here. The interac- 
t ion energies wi th  a screw dislocation can be found as 
before to be 

Gbv 
E1,2 = ~ [_+ cos 0(sI--SHI)] 

E3 -- 0. (8) 

This is the same as Fleischer 's  equat ion (7), except for 
a difference in  the defect volume used. 

The interact ion energies wi th  an edge dislocation are 

Gbv 
E1 - [(sin 8 0 + sin O)si + (2v sin 0)era] 

2~(1 -v )r  
Gbv 

E2, 8 = [ + (cos 0 cos 20) ( s ~ -  sin) 
2~r(1 --v)r 

+ (sin 3 0 sin 0) (s~ +SIII) + (2r sin 0) s i ] .  (9) 

In  equations (8) and  (9) the Ei  are for defects whose 
axes are [001], [100], and  [010], respectively.  

(c) Third-nearest neighbor defect pairs 
There are 24 third-nearest  neighbor Na + sites around 

a Ca 2+ impur i ty ,  bu t  again only one-half of these are 
non-equivalent .  The interact ion energies wi th  a screw 
dislocation are 

E1,7,3,9=-~-~ r _+cos0 ----2 e--- T-V2sin0 2 e 

Gbv[ m) HI)] 
E2,8 = -~r  -~ 21/2 sin O 

E s , n  = 0. (10) 

The interact ion energies wi th  an edge dislocation are 

Gbv [ (sin3 0_b sin 0) (58i 6 ~ i i i  ) E1,4 = Elo,~ - 2z~(1-v)r 

E2,8,5,6 = El1,12,8,9 

= 2~(1 ! ~ (cos0 cos20) 

+ (sin  0 + sin + 

(111 
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I n t e r a c t i o n  e n e r g y  b e t w e e n  d e f e c t  c l u s t e r s  
a n d  d i s l o c a t i o n s  

In  order to get an  idea of the magni tudes  of the 
te t ragonal  s t ra in  components at  a Ca i m p u r i t y -  
vacancy  pair,  the  s t ra in  at a coherent precipitate 
part icle of calcium chloride in a sodium chloride latt ice 
will  now be calculated. 

In  Fig. 3 the relat ive latt ice orientat ion of calcium 
chloride precipi ta te  in sodium chloride is shown as 
de termined by  X-ray  analyses (Suzuki, 1955). Here 
a0-- 6.24, b0-- 6"43, and co = 4.20 A are the calcium 
chloride and  aN=5.63  J~ the sodium chloride unit-  
cell dimensions.  I t  should be kept  in mind  tha t  Fig. 3 
shows only one of 24 possible orientations of the 
x-, y-, z-coordinate system. This will  be impor tan t  
la ter  when the interact ion energy between a precipitate 
part icle and  a dislocation is considered. 

Fig. 3. Lattice orientation of calcium chloride 
precipitate in sodium chloride. 

v y  

The lat t ice s t ra in  between the ma t r ix  and the 
precipi tate  part icle  can be found by  imposing the 
dimensions and angular  relat ionships of the calcium 
chloride uni t  cell upon the sodium chloride uni t  cell of 
Fig. 3, calculating the distorted sodium chloride unit- 
cell shape, and comparing it  wi th  the shape of the 
undis tor ted uni t  cell to arrive at  the s t ra in  components.  
When  this is done the s train tensor is found to be 

0-091 0.032 
e~ = 0.032 0.091 

-0 .011  -0 .011  

-0 .011~ 
-0-011 ~ i, j = x, y, x. (12) 
- 0-204 /  

The principal  strains associated wi th  this s t ra in  tensor 
form a tetragonal  s t ra in  tensor of the type of equat ion 
(3) wi th  the I I I  axis about  2-5 ° from the z axis of the 
sodium chloride lattice. This corresponds very closely 
to the state of s t ra in  assumed for the second-nearest 
neighbor or [100] type  defect pairs considered previ- 
ously. The strains caused by  the precipi tate  part icle 
can be considered to be ent i re ly  wi th in  the part icle 
for the calculat ion of its in teract ion energy wi th  a 
dislocation. This is consistent wi th  the choice of the 
in teract ion volume being jus t  the volume of the 
particle.  

Taking into consideration the 24 possible orienta- 
t ions of the x-, y-, z-coordinate axes with respect to 
the calcium chloride uni t  cell i t  can be shown tha t  
there are twelve different  values for the in teract ion 
energy of a part icle  wi th  a screw dislocation and  six 
with an  edge dislocation. These are, for a screw 
dislocation, 

Gbv 
EI-s = ~ [± 0.295 cos 0 + V2(± 0.0322 ± 0-0109) sin 0] 

Gbv 
E9-12 = ~ [~/2 (± 0.0109 _+ 0.0109) sin 0]. (13) 

In  this  case E n  and E12 are zero. 
For an edge dislocation they  are 
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Fig. 4. Interaction energy of a screw dislocation with a Ca defect cluster. 
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Fig. 5. Interaction energy of an edge dislocation with a Ca defect cluster (Poisson's ratio, ~ = 0.25). 

Gbv 
[0"0908 (sin 3 0 + sin 0) - 0.408~ sin 0 

2~(1 -v ) r  

+ 0.0966 sin 0 cos e 0] 

Gbv 
- -  [ Jr 0.2948 cos 0 cos 20 - 0.0566 
2~(1 -v ) r  
× (sin 3 0+s in  0)+0.1816r sin 0 
+ 0.0327 sin 0 cos 2 0]. (14) 

The interaction energies, in the units of Gbv/2~r, 
are plotted versus 0 in Fig. 4 for a screw dislocation 
and Fig. 5 for an edge dislocation. I t  can be seen that  
if the terms in equations (13) and (14) due to the 
shear strains of equation (12) are omitted, the inter- 
action energies shown in these Figures are of the same 
form as those for the single [100] Ca impurity-vacancy 
pairs, equations (8) and (9). 

D i s c u s s i o n  

The strong interaction between a screw dislocation and 
the various impurity-vacancy defects in sodium 
chloride containing calcium is noteworthy. An exact 
evaluation of the tetragonal strain associated with the 
calcium impurity-vacancy pairs in sodium chloride 
is difficult. Some idea of the distortion, however, 
may be gained from a comparison with that  given by 
equation (12) for the defect clusters. Since the distor- 
tion for a defect cluster is essentially tetragonal in the 
(100~ direction, the tetragonal strain for a (100) Ca 
impurity-vacancy defect will be of the order of, or 
more probably slightly greater than, that  given by 
equation (12). If one uses the approximate relationship 
that  the tetragonal strain associated with the defect 
pairs varies inversely as the square of the distance 
between the Ca impurity and the sodium ion vacancy, 
the following estimates of the tetragonal strain para- 
meter (e i -e in)  are obtained: --,0.6 to 0.8 for a (110) 
defect, ,~0.3 to 0.4 for a (100) defect, and ~0-2 to 0.25 

for a (112) defect. I t  is hoped that  mechanical relaxa- 
tion experiments using sodium chloride containing 
the various defect pairs will lead to an experimental 
evaluation of the magnitude of the shear distortions. 
Such studies are now being undertaken by the authors. 

Since the mobility of screw dislocations is parti- 
cularly important in the plastic deformation of crystal- 
line solids, the strong interaction is expected to lead 
to significant strengthening of the NaG1 structure. 
For single impurity-vacancy pairs where reorientation 
of the pairs with respect to the stress fields of a moving 
dislocation takes place by one or two nearest neighbor 
jumps of the sodium ion vacancy around the calcium 
impurity, strengthening is most probably due to a 
cloud-dragging mechanism similar to the Snoek effect 
proposed for the case of carbon in ~ iron (Schoeck 
& Seeger, 1959). For the case of defect clusters where 
reorientation will depend on coordinated movements 
of both the impurity ions and the cation vacancies, 
strengthening takes place most likely by a slightly 
different mechanism such as the one proposed by 
Fleischer (1962). A detailed discussion of the subject 
is being published separately (Pratt, Chang & Newey, 
1963). 
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